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Abstract—Insufficient lighting poses challenges to both human
and machine visual analytics. While existing low-light enhance-
ment methods prioritize human visual perception, they often ne-
glect machine vision and high-level semantics. In this paper, we
make pioneering efforts to build an illumination enhancement
model for high-level vision. Drawing inspiration from camera
response functions, our model could enhance images from the
machine vision perspective despite being lightweight in architec-
ture and simple in formulation. We also introduce two approaches
that leverage knowledge from base enhancement curves and self-
supervised pretext tasks to train for different downstream normal-
to-low-light adaptation scenarios. Our proposed framework over-
comes the limitations of existing algorithms without requiring
access to labeled data in low-light conditions. It facilitates more ef-
fective illumination restoration and feature alignment, significantly
improving the performance of downstream tasks in a plug-and-play
manner. This research advances the field of low-light machine
analytics and broadly applies to various high-level vision tasks,
including classification, face detection, optical flow estimation, and
video action recognition.

Index Terms—Domain adaptation, high-level vision, illumina-
tion enhancement, low-light, self-supervised learning.

I. INTRODUCTION

INSUFFICIENT lighting is a prevalent image degradation
resulting from adverse environments, defective equipment,

or improper shooting settings. It can impair images’ visual
quality, leading to detail loss, decreased visibility, and aes-
thetic distortion. Moreover, with the advance of deep learning,
visual analytics is becoming increasingly crucial in numerous
applications. Low-light conditions can also challenge machine
analytics, raising difficulties in high-level vision tasks, such as
nighttime surveillance video analysis and autonomous driving.
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The restoration of low-light images has received extensive
attention since the birth of digital imaging. Many works have
effectively improved the human visual quality of low-light im-
ages, from early manually designed algorithms [1] to recent
learning-based models [2]. However, most existing low-light
enhancement methods aim to improve the images’ visual quality
but ignore machine vision demand, misleading downstream
high-level vision models. Some methods try to embed semantic
perception [3] for visual reconstruction but still cannot guarantee
performance in downstream high-level vision tasks.

To further improve machine vision performance in the dark,
an intuitive idea is to directly train the model on annotated
low-light data [4]. Despite performing well on certain tasks,
annotation requirements severely limit their application scope.
Therefore, unsupervised normal-to-low-light domain adaptation
has emerged as a promising research direction that eliminates
the annotation needs. Among this field, some methods propose
to synthesize target domain annotation through image trans-
lation [5], [6], while others adopt self-supervised learning [7]
or utilize handcraft operators [8]. However, existing algorithms
either rely on multiple source domains [9], adopt troublesome
multi-stage and multi-level processes [7], or fail in darker
cases [8]. Moreover, most adaptive methods concentrate on the
high-dimensional features of machine analytics models while
neglecting the characteristics of input images themselves.

In contrast to the aforementioned methods, we fully utilize the
potential of illumination adjustment. We propose a curve-based
enhancement model and two self-supervised training strategies
to enhance images from the machine vision perspective, thus
benefiting the model’s performance on downstream high-level
tasks. First, inspired by the Weber-Fechner law and camera
statistics, we constrain our enhancement function by “concav-
ity”, which enjoys an efficient implementation by predicting a
non-positive second-order derivative and then applying discrete
integration. This design enables the enhancement model to
produce natural-looking images and improves its adaptability to
multiple downstream tasks. Then, we design two self-supervised
strategies to train this model towards unsupervised adaptation.
When task-relevant information is available, we propose as-
sembling the knowledge of a pre-defined set of base enhance-
ment curves. This process is implemented by congregating the
model’s prediction results on images enhanced by these curves
into pseudo labels. Although simple in formulation, assembling
the base curves could bring reliable supervision for subsequent
self-training. Meanwhile, we draw support from pretext tasks
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when task-relevant information is difficult to use. Specifically,
we train a pretext task head to guide the model by our proposed
rotated jigsaw task. The network architecture and training strate-
gies complement each other and form a framework with strong
adaptability despite being easy to train.

Our self-aligned concave curve (SACC) framework could be
a strong baseline for unsupervised normal-to-low-light adap-
tation. Note that although our method leverages task-relevant
information, it does not rely on any labeled data under low-light
conditions, and the obtained models are plug-and-play for a wide
range of downstream tasks. Besides, we suggest using pseudo-
labeling to address the noise and semantic discrepancies between
the enhanced low-light and the natural normal-light images.
We call this SACC+, which is straightforward to implement
but could further boost the performance and surpass existing
low-light enhancement and domain adaptation techniques.

In summary, our contributions are threefold:
� We are the first to propose an illumination enhancement

model for low-light high-level vision. Our model could en-
hance images from the machine vision perspective despite
being lightweight in architecture and simple in formula-
tion.

� We train the enhancement model with base enhancement
curves or pretext tasks to satisfy different downstream sce-
narios. Our training strategy can narrow the normal/low-
light domain gap and improve the model’s performance
without annotated data. Besides, our framework serves as
a plug-and-play remedy for multiple downstream tasks.

� We evaluate our method on various high-level vision tasks,
including classification, face detection, optical flow estima-
tion, and video action recognition. Extensive experiments
across multiple benchmarks demonstrate the superiority of
our approach over state-of-the-art low-light enhancement
and domain adaptation methods.

This manuscript is an extension of our prior publication [10]
while exhibiting improvements in the following aspects:
(1) We introduce a novel training strategy for our deep con-
cave curve in Section IV-A. This strategy enables us to fully
leverage task-relevant information, which could substantially
improve performance even in low-light conditions where la-
beled data is unavailable. We denote this novel technique by
SACC-CE and refer to the original method as SACC-PT. (2)
We incorporate asymmetric data augmentation for unsupervised
adaptation to simulate the diverse low-light conditions while
keeping the normal-light distribution simple, thus further boost-
ing the performance, as detailed in Section IV-C. (3) We enrich
the ablation analyses in Section IV, provide more qualitative
results in Section VI-B–VI-E, and discuss a broader scope of
applications in Section VI-H. Extensive experiments on various
datasets demonstrate the superiority of our method, as shown
in Fig. 1.

The structure of the remaining sections is as follows: In
Section II, we review previous literature in relevant areas. Sub-
sequently, we introduce the motivation and design of our deep
concave curve in Section III, elaborate on its training strategy in
Section IV, and empirically analyze both the curve architecture
and training strategy in Section V. Thereafter, we validate the

Fig. 1. Left: Comparison with the baseline model (trained with normal light
data only) and previous state-of-the-art on multiple downstream tasks. Right:
Example nighttime face detection results. Our approach better enhances faces
hidden in darkness, resulting in more accurate detection.

efficacy of our framework in Section VI and summarize the paper
in Section VII.

II. RELATED WORKS

Low-Light Restoration: Low-light enhancement aims to im-
prove the human visual experience towards images captured
under insufficient lighting conditions. Conventional approaches
exploit non-learning techniques such as histogram equaliza-
tion [11], gamma correction, and image formation theories
such as the Retinex Theory [12], which decomposes images
into albedo and reflectance components. The advent of deep
learning has facilitated the development of more effective ap-
proaches. Some works [13], [14], [15] suggested simulating
the Retinex decomposition process using paired training data,
while others, like EnlightenGAN [16], employ the adversarial
learning paradigm to eliminate the need for paired data. Be-
sides, DRBN [17] introduced a semi-supervised framework that
combines the benefits of supervised and unsupervised methods;
RUAS [2] unrolled the optimization process of Retinex-inspired
models and used neural architecture search to find better net-
work architectures; Zero-DCE [18] introduced quadratic curves
for enhancement, whose parameters could be learned without
normal-light references; Wu et al. [19] introduced a semantic-
aware knowledge-guided framework that assists a low-light en-
hancement model in learning semantic priors from segmentation
models; Ren et al. [20] proposed a hybrid network to capture
the global content and salient structures of images in a unified
network. Advanced techniques and frameworks, including fre-
quency decomposition [21], feature pyramids [22], [23], flow
models [24], and transformers [25], are also adopted in recent
papers. In addition to these approaches for general RGB images,
several works focus specifically on restoring backlit images [26],
multi-stereo images [27], ultra-high-definition images [28], [29],
RAW images [30], and videos [31], [32].

Unsupervised Domain Adaptation: Unsupervised domain
adaptation aims to adapt the model trained on a labeled source
domain to an unlabeled target domain. Existing methods can be
generally categorized into feature alignment [33], adversarial
learning [34], domain translation [35], and self-training [36].
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Feature alignment methods [33], [37], [38] quantify the feature
discrepancy between two domains by a certain statistical metric
and minimize it. Adversarial learning methods [34], [39], [40]
incorporate an adversarial loss term to distinguish domains.
Domain translation methods [35], [41], [42] synthesize target
domain samples by generative adversarial networks (GANs)
for training. Self-training methods [36], [43], [44], [45] create
pseudo-labels for the unlabeled target domain data and then
re-train the network. Nevertheless, despite achieving good per-
formance for many applications, existing domain adaptation
approaches are less effective in low-light conditions due to the
inherent complexity of the normal/low-light domain gap.

High-Level Vision in Low-Light Conditions: Recent years
witnessed a proliferation of research on low-light high-level
vision due to its increasing application demand. Apart from
utilizing enhancement methods as a pre-processing step, adapt-
ing the model pre-trained on normal-light data to low-light
is also a popular solution. For example, Sasagawa et al. [46]
devised an approach for dark object detection by combining
pre-trained models from different domains using glue layers.
MAET [47] exploits the image signal processing (ISP) pipeline
for nighttime image generation and uses both synthetic and
real nighttime images for training. HLA-Face [7] uses a joint
feature- and pixel-level framework for low-light face detection.
DANNet [9] proposes a multi-source adversarial training frame-
work for nighttime semantic segmentation to adapt models in a
single stage. CIConv [8] presents a color-invariant convolutional
network for learning illumination-invariant features that apply
to various tasks. Other research has focused on low-light image
retrieval [48], depth estimation [49], and matching [50].

Despite these progresses, most existing unsupervised adapta-
tion approaches concentrate on feature migration while ignoring
the significance of pixel-level adjustment. In contrast, this paper
presents an enhancement-based adaptation method that outper-
forms existing methods by a large margin.

III. ARCHITECTURE: THE DEEP CONCAVE CURVE

This section introduces our motivation and the architecture of
our illumination enhancement module.

A. Motivation: From CRF to Concave Curve

The camera response function (CRF) defines the relationship
between a scene’s light irradiance and the pixel values (intensity)
captured by a camera. Illumination is linearly related to the irra-
diance level but has a complex non-linear relationship with the
intensity. On this basis, some low-light enhancement works [51],
[52] exploit the linearity of irradiance. They first transform the
image’s intensity to irradiance, adjust its irradiance linearly,
and then map irradiance back to intensity. However, CRFs vary
across different cameras and even different ISO settings on the
same camera, posing a great challenge for estimating irradiance.
Moreover, this back-and-forth mapping is a pure low-level op-
eration requiring prior knowledge of the target camera’s ISP
settings.

Fig. 2. Left: real camera response functions from the DoRF [54] dataset.
Right: The heat map of second-order derivatives in DoRF, where each column
represents a camera response function.

We propose simplifying this complex pipeline into a single-
step adjustment at the intensity level, making it easier to incor-
porate high-level vision guidance during training. Specifically,
our adjustment function can be defined as a mapping g from
the original intensity value to the enhanced intensity value. We
first analyze the constraints g should satisfy. Generally, CRFs
can be considered identical for each pixel in an image, disre-
garding spatial variations such as vignetting, lens fall-off [53],
or signal-dependent noise. Thus, we set g as a global operation.
Additionally, g should be a monotonically increasing function
that passes through (0,0) and (1,1) to maintain the intensity’s
monotonicity and numerical range. Moreover, though g is de-
fined on discrete values, it should be approximately continuous
to prevent distortion on neighboring pixels.

Furthermore, we draw inspiration from real CRFs to de-
termine the shape of g. Fig. 2 shows a collection of CRFs
obtained from the DoRF [54] dataset. Statistically, we found
that 89.5% of the CRFs have a negative second-order derivative
(i.e., concavity), which is in line with the fact that a stimulus’s
perceived intensity is proportional to its physical intensity’s log-
arithm, as described by the Weber-Fechner law. Consequently,
a linear increase in irradiance leads to a concave transformation
in intensities, indicating that g should be concave.

The above constraints appropriately limit the solution space.
On the one hand, the constraints are concise for implementation.
On the other hand, they ensure that enhanced images follow
the distribution of natural images and thus support downstream
vision tasks. Next, we introduce how to embed the above con-
straints into neural networks.

B. Formulation and Implementation

The above analysis suggests that our illumination enhance-
ment function should adhere to two fundamental characteristics:
increasing monotonicity and concavity. Accordingly, we call our
enhancement model the “deep concave curve”.

Now, we present its comprehensive design. Given an input
low-light image IL, we use a neural network C to predict the
adjustment function g. g can be represented as a vector g ∈
RP for a color space with P numeric values (e.g., P = 256
for 8-bit images). Specifically, for a pixel of value (p− 1)/P
(p ∈ {1, 2, . . . , P}) from the input image, its new value will
be the p-th element of g. We provide an exemplary case in the
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Fig. 3. The architecture of the proposed deep concave curve, which intends to enhance the illumination of the input low-light image. We first predict the minus
second-order derivative −∇2c and then integrate and normalize it into a concave curve g. Finally, we apply g to the input image IL to obtain the enhanced
image ÎL.

supplementary material to demonstrate the functionality of the
curve.

Intuitively, concavity and monotonicity could be achieved
by penalty terms on the discrete first-order or second-order
derivatives. Nevertheless, this naive approach brings new loss
functions and thus adds burdens to the balance between multiple
learning objectives.

We instead propose to satisfy the two constraints by al-
tering the model’s prediction to avoid introducing new loss
functions. Our model predicts the negative second derivative
−∇2c = C(IL) instead of directly estimating g. The concavity
of g is ensured by −∇2c ≥ 0, and we implement −∇2c ≥ 0 by
incorporating a ReLU activation after the final layer of network
C. Then, we integrate −∇2c into c. Finally, we normalize c into
g = Norm(c) to fit the mapping to the range of [0,1].

The discrete integration from −∇2c to ∇c can be consid-
ered sub-sequence summation. Specifically, we represent ∇c
as the matrix-vector multiplication ∇c = A · (−∇2c) where
A = [aij ] is the upper triangular matrix:

aij =

{
1, i ≤ j,
0, i > j.

(1)

Since −∇2c ≥ 0 and aij ≥ 0, it follows that ∇c ≥ 0, guaran-
teeing the function g’s monotonicity. Similarly, c = B · (∇c),
where B = [bij ] is a strictly lower triangular matrix:

bij =

{
0, i ≤ j,
1, i > j.

(2)

For computational efficiency, we combine the two integrations
into one step c = D · (−∇2c), where D = B ·A is calculated
in advance. Given that the first element of g is zero, we only
need to predict the remaining P − 1 values, i.e., −∇2c ∈ RP−1

and c ∈ RP . Finally, we divide c by its maximum value: g =
Norm(c) = c/||c||∞ to normalize its entry to [0,1].

C. Network Architecture

Given an input low-light image IL, We predict an independent
g for each color channel, i.e., gR, gG, gB for RGB images. As for
implementation, we place gR, gG, gB adjacently and carry out
the integration as a one-dimensional convolution with an output
channel of 256 and a kernel size of 1. The convolution weight
is set to D = B ·A shared across the three channels.

We depict the overall architecture in Fig. 3. During training
and inference, we downsample the input image to a resolution of
16× 16 to enhance the receptive field and efficiency. The curve
predictor C comprises a shallow U-Net [55], two convolutional
layers, a global average pooling, and a fully connected layer. The
output dimension is 765 for 8-bit RGB images. After obtaining
the model’s prediction, we reshape it to 3× 255 and then acquire
c by integrating it through 1D convolution. Finally, we normalize
c to derive g and apply it back to IL.

IV. TRAINING STRATEGY: SELF-ALIGNED ADAPTATION

Upon introducing the form of the deep concave curve, this
section discusses how to train this curve for unsupervised illu-
mination adaptation.

Our objective is to train the illumination enhancement curve
capable of improving the model’s performance on downstream
tasks in low-light conditions. Contrary to conventional low-light
enhancement techniques [2], [18] that solely focus on visual
quality, we propose to utilize high-level machine vision as
guidance. Specifically, given a downstream model pre-trained on
normal light images, we freeze its backbone and want our deep
concave curve to bridge the feature-level gap between low and
normal light. Nonetheless, generating appropriate supervision
becomes our greatest challenge without direct supervision.

Previous works focused on aligning global features, using
techniques such as discrepancy metrics [38] or adversarial dis-
criminators [34]. However, the domain gap between low and
normal light includes both illumination-relevant and irrelevant
aspects, and we aim to align only the illumination-relevant
portions. The illumination-irrelevant distribution drift, such as
differences in background or object appearance, is not our
objective but abounds. As a result, inaccurate supervision is
introduced when aligning global features, potentially misleading
the model and complicating the training process.

To disentangle illumination-relevant and irrelevant features,
we employ self-supervised learning and devise two strategies for
scenarios where downstream task information can and cannot be
used. The following presents the design of each strategy.

A. Curve Ensemble Learning

To begin with, we discuss a circumstance where task in-
formation (i.e., the task head) is readily available. Utilizing
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Algorithm 1: Pseudo-Labeling in Curve Ensemble.

task information allows us to optimize our enhancement model
towards downstream tasks directly, thus avoiding being mis-
led by illumination-irrelevant features that are unimportant for
downstream tasks.

However, the crux remains the absence of labels, and the
most straightforward idea is to draw support from pseudo la-
bels, i.e., self-training. Self-training is a prevalent approach for
semi-supervised learning and domain adaptation [43], [44], [45].
Specifically, it uses a model pre-trained on the source domain to
generate pseudo labels for the unlabeled target domain data. Af-
terward, the model is re-trained on the target domain dataset with
pseudo labels. Nevertheless, directly adopting this approach for
normal-to-low-light adaptation will result in ill performance due
to too many noisy labels, thus yielding unsatisfactory results.

To generate high-quality pseudo labels, we propose to assem-
ble a set of simple curves, which serve as base enhancement
models. Despite being simple in formulation and poor in per-
formance, we expect that assembling those weak models could
result in a more robust model and thus bring reliable supervision
to our deep concave curve. Our method is called curve ensemble
learning, and the following elaborates on its details.

Given a low-light image IL and the curve family T , we gen-
erate an enhanced image IL,i = fi(IL) for each curve fi ∈ T
and then query the pre-trained daytime model to predict IL,i’s
label yi and confidence ci. Predictions with confidence below
a certain threshold t1 will be discarded. Then, we grant IL
a pseudo label if the remaining predictions are identical and
the number of them exceeds another threshold t2. The granted
pseudo label y is the prediction all remaining curves agree to.
This process is repeatedly operated on all target domain images.
Finally, we collect all images with a granted pseudo label and
obtain a low-light datasetDpl. The pseudo-code of this algorithm
is provided in Algorithm 1.

Then we define the form of curves in T . For typical low-
light enhancement mappings f : [0, 1] → [0, 1], it should satisfy
f(0) = 0, f(1) = 1 as well as being monotonic increasing and
concave. As discussed in [7], many curve forms (power, expo-
nential, arc-tangent, reciprocal, etc.) perform reasonably well,
while the reciprocal curve is the best. We follow their empirical
findings and set T be a set of reciprocal curves:

T =
⋃
α∈A

{f(x;α)}, (3)

where

f(x;α) =
(α+ 1)x

x+ α
(4)

and A = {0.001, 0.01, 0.04, 0.1, 0.25, 0.6, 2, 105}. Note that
α > 0 ensures the concavity of the curve. The T curves are
illustrated in Fig. 5.

Finally, we train the network with the cross-entropy loss �ce
on the pseudo labeled set Dpl:

LCE
L =

∑
(IL,y)∈Dpl

�ce(hT (F (ÎL)), y), (5)

where F is the feature extractor, hT the task-specific head, and
ÎL the enhanced result of IL by our deep concave curve. During
training, both F and hT are frozen.

B. Pretext Task Learning

When task information is available, we can leverage pseudo
labels to reduce the effect of illumination irrelevant factors.
However, for many downstream tasks, task heads involve non-
differentiable modules such as non-maximum suppression. In
such scenarios, directly using the model’s prediction for the
subsequent self-training process is inappropriate, as pointed out
in [56]. To address this issue, we propose an alternate approach
that draws support from self-supervised pretext tasks and does
not require task information.

We architect our approach on the following observation.
Despite having varied illumination conditions, both low-light
and normal-light domains share a prior distribution of natural
images. Therefore, a model trained on normal-light data should
also be able to do pretext tasks on the enhanced low-light images.
Leveraging this point, we first append a trainable MLP head
after the fixed feature extractor and train it on normal-light
images by the pretext task. We then add our deep concave curve
before the backbone and train it on low-light images by the
pretext task with the backbone and MLP head fixed. Through
optimizing the pretext task loss, our deep concave curve could
learn to enhance low-light images for the downstream models,
thus implicitly improving the downstream task performance in
underlit conditions.

Then, we discuss the choice of the pretext task. Contrastive
learning [57], [58] is a self-supervised learning paradigm
that contrasts positive and negative image pairs. However,
contrastive learning perplexes the model’s perception of il-
lumination as it requires fierce signal-related augmentations
(e.g., color jittering). Moreover, contrastive learning maximizes
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Fig. 4. The framework of self-aligned concave curve (SACC). When task information is available, we generate high-quality pseudo labels by assembling
knowledge from a pre-defined curve family. When task information is unavailable, we first train a pretext head on normal-light data and then learn the deep concave
curve on dark data with a fixed pretext head.

Fig. 5. Illustration of reciprocal curve family T (a), and corresponding en-
hanced results (b).

the feature distance between different samples, which will mis-
lead the enhancement model into generating diverse but ab-
normal results. Meanwhile, although conventional techniques
such as rotation prediction [59] or jigsaw puzzling [60] do
not alter the images’ visual appearance, they are not pow-
erful enough to provide enough supervision for illumination
adaptation.

To effectively guide the enhancement model, we propose
the rotated jigsaw puzzle. The rotated jigsaw puzzle involves
randomly rotating the input image at various angles and applying
a 3×3 jigsaw shuffling process. The network is then trained to
recognize the permutation. This approach is more challenging
than traditional jigsaw puzzling and enhances the MLP heads’
understanding of semantics, thus introducing more supervision
for adaptation.

The training pipeline involves two steps. We first fix the
feature extractor F and train the jigsaw head hJ on normal-
light dataset DN consisting of normal-light images and their
ground-truth rotated jigsaw permutation p:

LPT
N =

∑
IN∈DN

�ce(hJ(F (IN )), p). (6)

Then we fix both F and hJ , and train our deep concave curve
on the low-light dataset DL:

LPT
L =

∑
IL∈DL

�ce(hJ(F (ÎL)), p), (7)

where ÎL is the enhanced result of IL by our deep concave curve.
We illustrate the two training strategies in Fig. 4.

C. Unsupervised Normal-to-Low-Light Adaptation

The above designs form our novel unsupervised low-light
adaptation framework, dubbed the self-aligned concave curve
(SACC). Given a downstream model pre-trained on normal-light
data, we use its feature extractor to train the deep concave curve
via two distinct strategies with and without task information:
curve ensemble (SACC-CE) and pretext task (SACC-PT). In
the test phase, input images are first enhanced before applying
the downstream model.

Contrary to existing low-light adaptation techniques [7], [8],
[61], SACC eliminates the need for normal and low-light data an-
notations and does not alter the downstream model. Despite only
focusing on illumination enhancement, SACC achieves superior
results by concurrently addressing low-level characteristics and
high-level features.

However, low-light conditions present challenges beyond in-
sufficient lighting, such as noise and semantics. While SACC
effectively manages illumination shifts, other distribution gaps
persist between enhanced low-light images and real-world
normal-light images, proving difficult to address via curve-based
enhancement. On this basis, we again leverage self-training
to finetune the downstream model. Consistent with previous
self-training approaches, our method involves two steps: pseudo-
label generation and finetuning.

Pseudo-Label Generation: A prevalent issue in self-training
is overfitting due to noisy labels. To mitigate this issue, we
employ a simple threshold rejection mechanism. Specifically,
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TABLE I
DESCRIPTION OF OUR METHODS

low-confidence pseudo-labels are discarded during the fine-
tuning stage. Although seemingly simplistic, we empirically
found that this method can achieve comparable results to those
self-paced techniques.

Finetuning with Asymmetric Augmentation: Additionally, we
propose to inject asymmetric augmentations into low-light and
normal-light images. Concretely, we exert weak data augmenta-
tions (e.g., horizontal flip and mild resize & crop) to the normal
light images and strong data augmentations (e.g., fierce resize &
crop and color jittering) to low-light images to simulate various
low-illumination environments and make the task more difficult.

This self-training strategy on the downstream model can
further mitigate the domain gap between enhanced low-light
and normal-light images. We call this advanced version SACC+.
For disambiguation, we briefly explain our proposed methods in
Table I.

V. ANALYSIS OF METHOD DESIGN

A. Justification for Model Architecture

In the following, we provide empirical justifications for the
proposed illumination enhancement model, i.e., the deep con-
cave curve. The analysis is based on the classification dataset
CODaN [8] and face detection dataset DARK FACE [62] and
WIDER FACE [62]. Our goal is to improve the performance
of the normal-light pre-trained model in low-light conditions.
The normal-light pre-trained models are ResNet-18 [63] for
classification and DSFD [64] for detection. More details can be
found in Section VI. As for training strategy, we adopt SACC-CE
for the former and SACC-PT for the latter if not explicitly
specified. For efficiency, we adopt the fast inference mode of
DSFD [64] during evaluation in this section.

To begin with, we compare our approach with other network
architectures for low-light enhancement. We explore two repre-
sentative enhancement models: EnlightenGAN [16], which di-
rectly performs image-to-image translation through a U-net [55],
and Zero-DCE [18], which performs pixel-wise adjustment by
an iterative quadratic curve. All enhancement models are trained
using the same strategy as ours so that we can solely evaluate
the effect of network architecture.

TABLE II
EFFECTS OF DIFFERENT LOW-LIGHT ENHANCEMENT BACKBONES UNDER OUR

ASYMMETRIC SELF-SUPERVISED STRATEGY

As the subjective results in Table II demonstrate, both En-
lightenGAN and Zero-DCE perform poorer than our proposed
deep concave curve.

As shown in Fig. 6, we observe weird artifacts on enhanced
images generated by EnlightenGAN and Zero-DCE. In Fig. 6(a),
both methods cause discontinuous color variation. In Fig. 6(b),
the edges have abnormal textures. In comparison, our deep
concave curve enjoys better visual results and downstream
performance in both image classification and face detection.
These results demonstrate our spatially sharing, monotonically
increasing, and concavity constraints could faithfully regularize
the model from carving cheating symbols or hints (i.e., artifacts)
on images.

Additionally, we test gamma correction xγ(0 < γ < 1) as an
alternate curve-based enhancement approach by using a shallow
convolutional network to predict γ. As shown in Table II, its
performance is limited. We ascribe it to our curve’s high degree
of freedom as we predict an independent target value for each
input pixel value. At the same time, gamma correction only has
the global adjustment parameter γ.

Finally, we explore the appropriate intensity of constraint
imposed on the curve prediction network. As shown in Fig. 7 and
Table II, setting the curve unrestricted will result in abnormal
enhancement results. Meanwhile, the curve seems discontinuous
with only ∇g ≥ 0. Our SACC achieves the best result when
we require the curve to satisfy ∇g ≥ 0 and ∇2˜g ≤ 0. Note
that in Fig. 7, the red, blue, and green curves have different
shapes, indicating that our model can perform channel-aware
enhancement in accordance with the input image, i.e., correct
the color bias. We also try∇3˜g ≥ 0 and discover it will degrade
the overall performance and generate partially over-exposed
images. This is because three successive iterative integration
exponentially increases the value of the weight matrix’s entries,
thus incurring gradient vanishing and complicating the training
process.

B. Justification for Training Strategy

Next, we discuss the proper training strategy for our deep con-
cave curve. We compare our proposed training strategy (SACC-
CE and SACC-PT) with other prevailing paradigms, including
discrepancy metrics [38], [65], [66], adversarial learning [67],
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Fig. 6. Effects of asymmetric self-supervised learning with different low-light enhancement model backbones.

Fig. 7. Empirical results on (a) CODaN classification dataset and (b) DARK FACE face detection dataset. We show each group’s low-light enhancement results
(left) and curve shapes (right) under different curve form constraints. The curve shapes demonstrate the correspondence between the original (x-axis) and new pixel
values (y-axis).

and self-supervised learning [58], [59], [60]. Quantitative results
are provided in Table III.

Discrepancy metrics, Central Moment Discrepancy (CMD)
[65], Maximum Mean Discrepancy (MMD) [66], and Deep
CORAL [38], are originally proposed to deal with general do-
main adaptation and are ineffective in bridging the normal/low-
light domain gap. Adversarial learning [67] also brings un-
satisfactory results since it is easy to discriminate between
normal/low-light modalities, which breaks the balance between
the feature extractor and discriminator. Besides, adversarial
learning also suffers from unstable training dynamics due to
its complex architecture.

For self-supervised learning, we consider both contrastive
learning-based [58] and pretext task-based approaches [59],
[60]. Despite the superiority of contrastive learning on model
pre-training, it considers global features and thus is unsuitable
for training our enhancement curve. Conventional pretext tasks,

including rotation prediction and jigsaw permutation, perform
unsatisfactorily due to their limited expressiveness.

As for proposed SACC-CE and SACC-PT, the former per-
forms better on the classification task while poorer on face de-
tection. We owe this to the discrete and easily comparable nature
of the output in classification, which improves the accuracy of
the curve ensemble. In contrast, the ensemble predictions exhibit
reduced accuracy when applied to face detection. Due to the
need for a specially designed merge operation for bounding
box predictions, directly combining them like classification
would lead to inaccurate or too few pseudo-labels, resulting in
sub-optimal training results. Designing a proper label merging
strategy might be a solution; however, developing a strategy
for each downstream task is impractical. Therefore, we propose
pretext task-based SACC-PT that operates directly on features.
SACC-PT performs worse than SACC-CE on classification
since it cannot leverage task information but is more general
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TABLE III
COMPARISON BETWEEN DIFFERENT TRAINING STRATEGIES OF OUR DEEP

CONCAVE CURVE

TABLE IV
COMPARISON BETWEEN DENOISING THE ENHANCED LOW-LIGHT IMAGES AND

OUR PROPOSED SELF-TRAINING APPROACH (SACC+)

to non-classification downstream tasks than SACC-CE. Over-
all, for applications that require the aggregation of full image
information for decision-making, such as image classification,
SACC-CE can be used; for those requiring finer-grained local
information for inference, SACC-PT can be used.

C. SACC+: Image Denoising or Model Finetuning?

Finally, we verify our design of SACC+. Since our deep
concave curve is a global operation, it leaves the noise un-
touched, which is one primary characteristic of low-light im-
ages. Therefore, denoising the enhanced images may further
improve the performance. To test this assumption, we consider
two approaches: the non-learning method BM3D [69] and the
learning-based Neighbor2Neighbor [68].

Despite their success in human visual experience, denoising
blurs details crucial to high-level semantics. As a result, the
model’s classification and face detection performance degrade
notably, as shown in Table IV. Contrarily, our finetuning ap-
proach, SACC+, inherently addresses noise issues through rep-
resentation learning without compromising image information.
Furthermore, employing asymmetric augmentation during fine-
tuning helps bridge the gap between the normal-light domain and
the enhanced low-light domain, effectively boosting the model’s
overall performance.

VI. EXPERIMENTS

This section provides the implementation details, benchmark-
ing results, empirical analysis, and applications of our proposed
method.

A. Implementation Details

Our proposed framework applies to various models and vision
tasks. To justify its effectiveness, we evaluate it on several rep-
resentative low-light vision tasks, including classification, face
detection, optical flow estimation, and video action recognition.

Our framework functions on a pre-trained model using
normal-light data. For SACC-CE/SACC-PT, we freeze the pre-
trained model and train our deep concave curve. Afterward,
for SACC-CE+/SACC-PT+, we freeze the enhancement model
and finetune the downstream model. Both stages require no
labeled low-light data. In the following, We adopt SACC-CE for
classification and video action recognition, while SACC-PT for
face detection and optical flow estimation. More implementation
details can be found in the supplementary material.

B. Low-Light Image Classification

To begin with, we evaluate our method by the image clas-
sification task. CODaN [8] is a 10-class dataset gathered for
low-light adaptation, which comprises 12,500 normal-light im-
ages and 2,500 low-light images. We use their official nor-
mal light settings while splitting 1,250 low-light images for
training/validation and the remaining for testing. We aim to
adapt the ResNet-18 pre-trained on normal light data to the low
light domain. We compare our approach with eleven low-light
enhancement methods and four unsupervised domain adaptation
methods. Note that enhancement methods only modify input
images, while adaptation methods also alter the model. We also
provide the fully supervised learning result (i.e., trained with
low-light labels) as a reference.

Table V shows the comparison results. Low-light enhance-
ment methods improve illumination from a human vision per-
spective but neglect machine vision, resulting in a limited
performance gain. Unsupervised domain adaptation methods,
CMD [65], AdaBN [75], and DANN [34], are designed for
general domain adaptation scenarios and fail to handle the
significant normal/low-light domain gap effectively. CIConv [8]
introduces a color-invariant convolutional layer to acquire
illumination-invariant features. However, its handcrafted opera-
tor is not robust enough to handle the diverse illumination condi-
tions of low-light environments. In contrast, our SACC-CE ad-
justs illumination according to machine vision guidance, yield-
ing the best outcome. Furthermore, our SACC-CE+ achieves
even higher results through pseudo-label finetuning. We also
compare our results with vanilla supervised training, which
could be an ideal upper bound for unsupervised methods to eval-
uate their potential. However, it is worth noting that supervised
methods are also constrained by data volume, collection domain,
etc., making the upper bound not strict. Due to incorporating our
adaptive enhancement curve and generalizable training strat-
egy, our method has achieved comparable results (less than
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TABLE V
COMPARISON RESULTS OF LOW-LIGHT IMAGE CLASSIFICATION

Fig. 8. An example result of low-light image classification. (a) The original
image is classified as “Chair” with confidence 0.98. After enhancement, the
model recognizes it correctly as “Cat”. (b)-(d) Different curve shapes.

5% performance drop on classification) or even surpasses the
performance of supervised methods (on face detection in the
following section). These results demonstrate the great potential
of our method.

We show an example of the predicted enhancement curves in
Fig. 8 to justify they have satisfied our requirements. Despite
−∇2c appearing discrete, its value remains positive, resulting
in a monotonically increasing integration ∇c and a concave
final enhancement curve g, which aligns with the constraint we
introduced in Section III-B. Satisfying these constraints ensures
that the predicted curves obey the natural image priors, thus
providing good generalization for low-light domain adaptation.

C. Dark Face Detection

We further benchmark our approach on dark face detection.
The WIDER FACE dataset [84] comprises 32,000 images from
various events and scenes, while the DARK FACE dataset [62]
consists of 10,000 nighttime street scene images. We employ
their official splits and use DSFD [64] as the baseline.

TABLE VI
COMPARISON RESULTS FOR DARK FACE DETECTION

Table VI presents the results. Although RetinexNet [13] and
KinD [14] focus on detail reconstruction and noise reduction,
they introduce additional artifacts that negatively affect machine
vision and face detection performance. Other low-light enhance-
ment methods also bring limited improvement. We attribute
these results to their ignorance of machine vision, which induces
undesirable but human-imperceptible noise to the enhanced
images.

On the other hand, unsupervised domain adaptation methods,
such as OSHOT [76], Progressive DA [77], and Pseudo La-
beling [78] only bring limited performance gain. Meanwhile,
despite being effective on CODaN, the color invariant layer
of CIConv [8] fails on the DARK FACE because of the ex-
tremely low illumination of nighttime street scenes. As shown
in Fig. 9(l), CIConv’s representation suffers from terrible noise.
HLA-Face [79] and HLA-Face v2 [79] adopt complex joint high-
low-level adaptation strategies. In contrast, our SACC-PT sur-
passes HLA-Face while only adjusting the illumination. Besides,
our advanced version, SACC-PT+, could even outperform the
fully supervised result, demonstrating our method’s superiority.

We then generalize the DSFD-trained SACC-PT to other
face detectors, including PyramidBox [80] and MogFace [81].
Table VII demonstrates our method performs consistently better
even on unseen downstream frameworks, indicating that knowl-
edge distilled from high-level vision is applicable across various
machine models.

D. Optical Flow Estimation in the Dark

Next, we investigate optical flow estimation to show the wide-
ranging applicability of our approach. The VBOF dataset [87]
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Fig. 9. Qualitative comparison results of dark face detection. † denotes that we have re-trained the enhancement model on DARKFACE [62]. The bounding
boxes’ color signals the model’s confidence in detection, with yellow representing a higher degree of confidence.

TABLE VII
MORE RESULTS ON DARK FACE [62]
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Fig. 10. Optical flow estimation results of the same scene under different illumination levels.

TABLE VIII
COMPARISON RESULTS OF LOW-LIGHT OPTICAL FLOW ESTIMATION RESULTS

contains 10,000 image pairs with varying brightness levels.
We choose Exp-2 to Exp-5 subsets as the target domain for
adaptation, where Exp-2 is brighter and Exp-5 is darker. The
ground truth flow fields are estimated by the state-of-the-art
method GMA [88] on the Exp-1 subset captured in normal-light
conditions. We adopt the PWC-Net [89] as the baseline and
measure the performance by end-point error (EPE).

Zheng et al. [87] proposed to adapt the optical flow models by
simulating dark image noise and generating a low-light training
dataset. Nevertheless, this synthesis process only considers the
signal distribution while neglecting machine vision, resulting
in a performance gain that is inferior to ours, as shown in
Table VIII. Moreover, Fig. 10 demonstrates our SACC’s robust-
ness to varying input illumination levels.

E. Low-Light Action Recognition

Although originally designed for images, our approach also
applies to videos. This section further evaluates our framework
by low-light video action recognition. We collect approximately
800 low-light video clips from the ARID dataset [92]. Normal
light training data consists of 2,600 normal light video clips from
HMDB51 [93], UCF101 [94], Kinetics-600 [90], and Moments
in Time [95]. We use the 3D-ResNet [96]-based I3D [85] as our
primary classifier.

When predicting enhancement curves, we combine all frames
in a video clip into a large image and globally apply the predicted
curve g to all frames. This uniformity of g ensures the temporal
consistency of the enhanced video. We report the results as top-1
accuracy.

As shown in Table IX, video enhancement methods StableL-
LVE [86], SMOID [32], and SGZ [91] improve the baseline by
around 3%. In contrast, our SACC-CE substantially improves
performance by 6.44% without additional complex operations,

TABLE IX
COMPARISON RESULTS OF LOW-LIGHT VIDEO ACTION RECOGNITION

TABLE X
COMPARISON BETWEEN THIS MANUSCRIPT AND OUR PREVIOUS WORK [10]

demonstrating our method’s superiority for videos. Subjective
results can be found in Fig. 11.

F. Comparison With Earlier Publication

Compared with our earlier publication [10], we present a novel
curve ensemble technique to train our deep concave curve for
classification tasks and an asymmetric augmentation strategy
for SACC+. These methodological advancements significantly
improve our model’s performance, as evidenced in Table X.

G. Running Time Analysis

We provide the computation complexity (multiple-accumu-
late operations, MACs), network parameters, and running time
for input images of resolution 1200× 900× 3 in Table XI. The
image is processed on a GeForce GTX TITAN X GPU with
an Intel i7-9700 K @3.60 GHz CPU. Our method achieves
significantly better performance while using lower computation
than previous methods.
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Fig. 11. Qualitative low-light video action recognition results. Comparison methods include the baseline model I3D [85], and low-light video enhancement
methods SMOID [32], StableLLVE [86].

Fig. 12. Enhancement results on Nighttime Driving [97]. Our model automatically finds that the input is bright enough and thus decides not to adjust the
illumination, which prevents over-exposure.

TABLE XI
COMPARISON BETWEEN LEARNING-BASED ENHANCEMENT METHODS ON

COMPUTATION COMPLEXITY (MACS), NETWORK PARAMETERS, AND RUNNING

TIME ANALYSIS

H. Broader Applications

Generalize to Supervised Learning Scenarios: Although pri-
marily developed for domain adaptation, our low-light enhance-
ment approach also offers advantages in supervised learning
situations. In particular, we utilize the deep concave curve
pre-trained with SACC, freeze its parameters, and finetune the
normal-light model using low-light labeled training data. Com-
pared to the supervised learning baseline, incorporating our deep
concave curve enhances the model’s low-light classification
top-1 accuracy from 71.52% to 72.64% on CODaN.

In-the-wild Evaluation: We evaluate our proposed SACC for
dark face detection on samples outside the DARK FACE [62]
dataset and show the results in Fig 13. While the baseline de-
tector [64] is sensitive to changes in lighting conditions and pro-
duces incorrect predictions, our approach could deliver accurate
predictions consistently, regardless of the lighting conditions.

Hard Cases: Scenarios with sufficient artificial lighting are
hard cases for low-light enhancement. We use nighttime se-
mantic segmentation as an example, where our goal is to adapt

Fig. 13. In-the-wild evaluation results. First row: Input images and detection
results by DSFD [64]. Second row: The corresponding enhanced image and
detection results of our method. The bounding boxes’ color signals the model’s
confidence in detection, with yellow representing a higher degree of confidence.

RefineNet [98] pre-trained on the Cityscapes [99] dataset to the
Nighttime Driving [97] dataset. Although the background night
sky is dark in nighttime street views, artificial lights sufficiently
illuminate the foreground. However, existing low-light enhance-
ment methods cannot distinguish whether the target objects are
bright.

In comparison, our deep concave curve determines there is
no need for further foreground enhancement, as illustrated in
Fig. 12. In Table XII, our SACC-PT outperforms low-light
enhancement methods even though they are re-trained on target
datasets, showing that our framework has superior adaptability.
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TABLE XII
NIGHTTIME SEMANTIC SEGMENTATION RESULTS

Fig. 14. Failure case on extremely dark and small faces. All models have false
positive predictions, but our model does not miss faces.

I. Failure Case Study

Our model may yield incorrect predictions for extremely
dark and tiny faces, which presents a challenging case for all
methods. As shown in Fig. 14, MF [72] and HLA-Face v2 [79]
also struggle to predict all faces correctly. This difficulty arises
when face detectors rely on contextual inference to determine
facial positions based on body shapes when faced with tiny
faces. Consequently, this approach cannot always differentiate
between a face and the back of the head, resulting in false
positives. While MF and HLA-Face missed some faces, our
model successfully identified all of them. This highlights our
model’s enhanced robustness in handling challenging scenarios
involving small faces.

VII. CONCLUSION

This paper presents a novel methodology for unsupervised
normal-to-low-light domain adaptation, referred to as the Self-
Aligned Concave Curve (SACC). Contrary to conventional
enhancement methods that concentrate on the human visual
experience, we propose to employ high-level machine vision
as guidance. Our approach utilizes the deep concave curve for
illumination enhancement in conjunction with two self-aligned
techniques for effectively training such a curve. Extensive exper-
iments on multiple high-level vision tasks demonstrate the supe-
riority of our framework. Existing and future works may incor-
porate our proposed enhancement curve for better performance.
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